Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 177
Filter
1.
International Journal of Oral Science ; (4): 11-11, 2023.
Article in English | WPRIM | ID: wpr-971598

ABSTRACT

Tumor-associated macrophages (TAMs) play crucial roles in tumor progression and immune responses. However, mechanisms of driving TAMs to antitumor function remain unknown. Here, transcriptome profiling analysis of human oral cancer tissues indicated that regulator of G protein signaling 12 (RGS12) regulates pathologic processes and immune-related pathways. Mice with RGS12 knockout in macrophages displayed decreased M1 TAMs in oral cancer tissues, and extensive proliferation and invasion of oral cancer cells. RGS12 increased the M1 macrophages with features of increased ciliated cell number and cilia length. Mechanistically, RGS12 associates with and activates MYC binding protein 2 (MYCBP2) to degrade the cilia protein kinesin family member 2A (KIF2A) in TAMs. Our results demonstrate that RGS12 is an essential oral cancer biomarker and regulator for immunosuppressive TAMs activation.


Subject(s)
Mice , Humans , Animals , Tumor-Associated Macrophages/metabolism , Carcinoma, Squamous Cell , Squamous Cell Carcinoma of Head and Neck , Mouth Neoplasms , GTP-Binding Proteins/metabolism , Head and Neck Neoplasms , Ubiquitin-Protein Ligases/metabolism , Adaptor Proteins, Signal Transducing/metabolism , RGS Proteins/metabolism , Kinesins/metabolism , Repressor Proteins/metabolism
2.
Biol. Res ; 56: 4-4, 2023. ilus, graf
Article in English | LILACS | ID: biblio-1420302

ABSTRACT

BACKGROUND: Spermatogonial stem cells (SSCs) are critical for sustaining spermatogenesis. Even though several regulators of SSC have been identified in rodents, the regulatory mechanism of SSC in humans has yet to be discovered. METHODS: To explore the regulatory mechanisms of human SSCs, we analyzed publicly available human testicular single-cell sequencing data and found that Ankyrin repeat and SOCS box protein 9 (ASB9) is highly expressed in SSCs. We examined the expression localization of ASB9 using immunohistochemistry and overexpressed ASB9 in human SSC lines to explore its role in SSC proliferation and apoptosis. Meanwhile, we used immunoprecipitation to find the target protein of ASB9 and verified its functions. In addition, we examined the changes in the distribution of ASB9 in non-obstructive azoospermia (NOA) patients using Western blot and immunofluorescence. RESULTS: The results of uniform manifold approximation and projection (UMAP) clustering and pseudotime analysis showed that ASB9 was highly expressed in SSCs, and its expression gradually increased during development. The immunohistochemical and dual-color immunofluorescence results displayed that ASB9 was mainly expressed in nonproliferating SSCs. Overexpression of ASB9 in the SSC line revealed significant inhibition of cell proliferation and increased apoptosis. We predicted the target proteins of ASB9 and verified that hypoxia-inducible factor 1-alpha inhibitor (HIF1AN), but not creatine kinase B-type (CKB), has a direct interaction with ASB9 in human SSC line using protein immunoprecipitation experiments. Subsequently, we re-expressed HIF1AN in ASB9 overexpressing cells and found that HIF1AN reversed the proliferative and apoptotic changes induced by ASB9 overexpression. In addition, we found that ABS9 was significantly downregulated in some NOA patients, implying a correlation between ASB9 dysregulation and impaired spermatogenesis. CONCLUSION: ASB9 is predominantly expressed in human SSCs, it affects the proliferation and apoptotic process of the SSC line through HIF1AN, and its abnormal expression may be associated with NOA.


Subject(s)
Humans , Male , Testis/metabolism , Ubiquitin-Protein Ligases/metabolism , Repressor Proteins/metabolism , Spermatogenesis/physiology , Ubiquitins/metabolism , Cell Line , Apoptosis , Cell Proliferation , Suppressor of Cytokine Signaling Proteins/metabolism , Mixed Function Oxygenases/metabolism
3.
Acta Physiologica Sinica ; (6): 160-170, 2023.
Article in Chinese | WPRIM | ID: wpr-980993

ABSTRACT

This study aimed to investigate the effect of treadmill exercise on neuropathic pain and to determine whether mitophagy of the anterior cingulate cortex (ACC) contributes to exercise-mediated amelioration of neuropathic pain. Chronic constriction injury of the sciatic nerve (CCI) was used to establish a neuropathic pain model in Sprague-Dawley (SD) rats. Von-Frey filaments were used to assess the mechanical paw withdrawal threshold (PWT), and a thermal radiation meter was used to assess the thermal paw withdrawal latency (PWL) in rats. qPCR was used to evaluate the mRNA levels of Pink1, Parkin, Fundc1, and Bnip3. Western blot was used to evaluate the protein levels of PINK1 and PARKIN. To determine the impact of the mitophagy inducer carbonyl cyanide m-chlorophenylhydrazone (CCCP) on pain behaviors in CCI rats, 24 SD rats were randomly divided into CCI drug control group (CCI+Veh group), CCI+CCCP low-dose group (CCI+CCCP0.25), CCI+CCCP medium-dose group (CCI+CCCP2.5), and CCI+CCCP high-dose group (CCI+CCCP5). Pain behaviors were assessed on 0, 1, 3, 5, and 7 days after modeling. To explore whether exercise regulates pain through mitophagy, 24 SD rats were divided into sham, CCI, and CCI+Exercise (CCI+Exe) groups. The rats in the CCI+Exe group underwent 4-week low-moderate treadmill training one week after modeling. The mechanical pain and thermal pain behaviors of the rats in each group were assessed on 0, 7, 14, 21, and 35 days after modeling. Western blot was used to detect the levels of the mitophagy-related proteins PINK1, PARKIN, LC3 II/LC3 I, and P62 in ACC tissues. Transmission electron microscopy was used to observe the ultrastructure of mitochondrial morphology in the ACC. The results showed that: (1) Compared with the sham group, the pain thresholds of the ipsilateral side of the CCI group decreased significantly (P < 0.001). Meanwhile, the mRNA and protein levels of Pink1 were significantly higher, and those of Parkin were lower in the CCI group (P < 0.05). (2) Compared with the CCI+Veh group, each CCCP-dose group showed higher mechanical and thermal pain thresholds, and the levels of PINK1 and LC3 II/LC3 I were elevated significantly (P < 0.05, P < 0.01). (3) The pain thresholds of the CCI+Exe group increased significantly compared with those of the CCI group after treadmill intervention (P < 0.001, P < 0.01). Compared with the CCI group, the protein levels of PINK1 and P62 were decreased (P < 0.001, P < 0.01), and the protein levels of PARKIN and LC3 II/LC3 I were increased in the CCI+Exe group (P < 0.01, P < 0.05). Rod-shaped mitochondria were observed in the ACC of CCI+Exe group, and there were little mitochondrial fragmentation, swelling, or vacuoles. The results suggest that the mitochondrial PINK1/PARKIN autophagy pathway is blocked in the ACC of neuropathic pain model rats. Treadmill exercise could restore mitochondrial homeostasis and relieve neuropathic pain via the PINK1/PARKIN pathway.


Subject(s)
Rats , Animals , Mitophagy/physiology , Rats, Sprague-Dawley , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , Gyrus Cinguli , Neuralgia , Ubiquitin-Protein Ligases/metabolism , Protein Kinases , Membrane Proteins/metabolism , Mitochondrial Proteins/metabolism
4.
Chinese Medical Journal ; (24): 799-806, 2023.
Article in English | WPRIM | ID: wpr-980841

ABSTRACT

BACKGROUND@#The hepatitis B virus (HBV) vaccine has been efficiently used for decades. However, hepatocellular carcinoma caused by HBV is still prevalent globally. We previously reported that interferon (IFN)-induced tripartite motif-containing 25 (TRIM25) inhibited HBV replication by increasing the IFN expression, and this study aimed to further clarify the anti-HBV mechanism of TRIM25.@*METHODS@#The TRIM25-mediated degradation of hepatitis B virus X (HBx) protein was determined by detecting the expression of HBx in TRIM25-overexpressed or knocked-out HepG2 or HepG2-NTCP cells via Western blotting. Co-immunoprecipitation was performed to confirm the interaction between TRIM25 and HBx, and colocalization of TRIM25 and HBx was identified via immunofluorescence; HBV e-antigen and HBV surface antigen were qualified by using an enzyme-linked immunosorbent assay (ELISA) kit from Kehua Biotech. TRIM25 mRNA, pregenomic RNA (pgRNA), and HBV DNA were detected by quantitative real-time polymerase chain reaction. The retinoic acid-inducible gene I (RIG-I) and pgRNA interaction was verified by RNA-binding protein immunoprecipitation assay.@*RESULTS@#We found that TRIM25 promoted HBx degradation, and confirmed that TRIM25 could enhance the K90-site ubiquitination of HBx as well as promote HBx degradation by the proteasome pathway. Interestingly, apart from the Really Interesting New Gene (RING) domain, the SPRY domain of TRIM25 was also indispensable for HBx degradation. In addition, we found that the expression of TRIM25 increased the recognition of HBV pgRNA by interacting with RIG-I, which further increased the IFN production, and SPRY, but not the RING domain is critical in this process.@*CONCLUSIONS@#The study found that TRIM25 interacted with HBx and promoted HBx-K90-site ubiquitination, which led to HBx degradation. On the other hand, TRIM25 may function as an adaptor, which enhanced the recognition of pgRNA by RIG-I, thereby further promoting IFN production. Our study can contribute to a better understanding of host-virus interaction.


Subject(s)
Humans , Hepatitis B virus , DEAD Box Protein 58/metabolism , RNA , Liver Neoplasms , Virus Replication , Tripartite Motif Proteins/genetics , Transcription Factors , Ubiquitin-Protein Ligases/genetics
5.
Journal of Experimental Hematology ; (6): 17-24, 2023.
Article in Chinese | WPRIM | ID: wpr-971096

ABSTRACT

OBJECTIVE@#To analyze the gene mutation profile in children with acute lymphocyte leukemia (ALL) and to explore its prognostic significance.@*METHODS@#Clinical data of 249 primary pediatric ALL patients diagnosed and treated in the Department of Hematological Oncology of Wuhan Children's Hospital from January 2018 to December 2021 were analyzed retrospectively. Next-generation sequencing (NGS) was used to obtain gene mutation data and analyze the correlation between it and the prognosis of children with ALL.@*RESULTS@#227 (91.2%) were B-ALL, 22 (8.8%) were T-ALL among the 249 cases, and 178 (71.5%) were found to have gene mutations, of which 85 (34.1%) had ≥3 gene mutations. NRAS(23.7%), KRAS (22.9%),FLT3(11.2%), PTPN11(8.8%), CREBBP (7.2%), NOTCH1(6.4%) were the most frequently mutated genes, the mutations of KRAS, FLT3, PTPN11, CREBBP were mainly found in B-ALL, the mutations of NOTCH1 and FBXW7 were mainly found in T-ALL. The gene mutation incidence of T-ALL was significantly higher than that of B-ALL (χ2= 5.573,P<0.05) and were more likely to have co-mutations (P<0.05). The predicted 4-year EFS rate (47.9% vs 88.5%, P<0.001) and OS rate (53.8% vs 94.1%, P<0.001) in children with tp53 mutations were significantly lower than those of patients without tp53 mutations. Patients with NOTCH1 mutations had higher initial white blood cell count (128.64×109/L vs 8.23×109/L,P<0.001), and children with NOTCH1 mutations had a lower 4-year EFS rate than those of without mutations (71.5% vs 87.2%, P=0.037).@*CONCLUSION@#Genetic mutations are prevalent in childhood ALL and mutations in tp53 and NOTCH1 are strong predictors of adverse outcomes in childhood ALL, with NGS contributing to the discovery of genetic mutations and timely adjustment of treatment regimens.


Subject(s)
Child , Humans , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Cell Cycle Proteins/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Retrospective Studies , Ubiquitin-Protein Ligases/genetics , Prognosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Mutation , Lymphocytes
6.
China Journal of Chinese Materia Medica ; (24): 534-541, 2023.
Article in Chinese | WPRIM | ID: wpr-970490

ABSTRACT

This study investigated the mechanism of Danggui Shaoyao Powder(DSP) against mitophagy in rat model of Alzheimer's disease(AD) induced by streptozotocin(STZ) based on PTEN induced putative kinase 1(PINK1)-Parkin signaling pathway. The AD rat model was established by injecting STZ into the lateral ventricle, and the rats were divided into normal group, model group, DSP low-dose group(12 g·kg~(-1)·d~(-1)), DSP medium-dose group(24 g·kg~(-1)·d~(-1)), and DSP high-dose group(36 g·kg~(-1)·d~(-1)). Morris water maze test was used to detect the learning and memory function of the rats, and transmission electron microscopy and immunofluorescence were employed to detect mitophagy. The protein expression levels of PINK1, Parkin, LC3BⅠ/LC3BⅡ, and p62 were assayed by Western blot. Compared with the normal group, the model group showed a significant decrease in the learning and memory function(P<0.01), reduced protein expression of PINK1 and Parkin(P<0.05), increased protein expression of LC3BⅠ/LC3BⅡ and p62(P<0.05), and decreased occurrence of mitophagy(P<0.01). Compared with the model group, the DSP medium-and high-dose groups notably improved the learning and memory ability of AD rats, which mainly manifested as shortened escape latency, leng-thened time in target quadrants and elevated number of crossing the platform(P<0.05 or P<0.01), remarkably activated mitophagy(P<0.05), up-regulated the protein expression of PINK1 and Parkin, and down-regulated the protein expression of LC3BⅠ/LC3BⅡ and p62(P<0.05 or P<0.01). These results demonstrated that DSP might promote mitophagy mediated by PINK1-Parkin pathway to remove damaged mitochondria and improve mitochondrial function, thereby exerting a neuroprotective effect.


Subject(s)
Rats , Animals , Mitophagy , Alzheimer Disease/genetics , Powders , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism
7.
Chinese Critical Care Medicine ; (12): 381-386, 2023.
Article in Chinese | WPRIM | ID: wpr-982598

ABSTRACT

OBJECTIVE@#To investigate the effects of gene of phosphate and tension homology (PTEN)-induced putative kinase 1 (PINK1)/Parkin pathway on hippocampal mitophagy and cognitive function in mice with sepsis-associated encephalopathy (SAE) and its possible mechanism.@*METHODS@#A total of 80 male C57BL/6J mice were randomly divided into Sham group, cecal ligation puncture (CLP) group, PINK1 plasmid transfection pretreatment groups (p-PINK1+Sham group, p-PINK1+CLP group), empty vector plasmid transfection control group (p-vector+CLP group), with 16 mice in each group. The mice in CLP groups were treated with CLP to reproduce SAE models. The mice in the Sham groups were performed laparotomy only. Animals in the p-PINK1+Sham and p-PINK1+CLP groups were transfected with PINK1 plasmid through the lateral ventricle at 24 hours before surgery, while mice in the p-vector+CLP group were transfected with the empty plasmid. Morris water maze experiment was performed 7 days after CLP. The hippocampal tissues were collected, the pathological changes were observed under a light microscope after hematoxylin-eosin (HE) staining, and the mitochondrial autophagy was observed under a transmission electron microscopy after uranyl acetate and lead citrate staining. The expressions of PINK1, Parkin, Beclin1, interleukins (IL-6, IL-1β) and microtubule-associated protein 1 light chain 3 (LC3) were detected by Western blotting.@*RESULTS@#Compared with the Sham group, CLP group mice in Morris water maze experiment had longer escape latency, shorter target quadrant residence time, and fewer times of crossing the platform at 1-4 days. Under the light microscope, the hippocampal structure of the mouse was injured, the neuronal cells were arranged in disorder, and the nuclei were pyknotic. Under the electron microscope, the mitochondria appeared swollen, round, and wrapped by bilayer or multilayer membrane structures. Compared with the Sham group, CLP group had higher expressions of PINK1, Parkin, Beclin1, LC3II/LC3I ratio, IL-6 and IL-1β in hippocampus, indicating that sepsis induced by CLP could activated inflammatory response and caused PINK1/Parkin-mediated mitophagy. Compared with the CLP group, p-PINK1+CLP group had shorter escape latencies, spent more time in the target quadrant and had more number of crossings in the target quadrant at 1-4 days. Under the light microscope, the hippocampal structures of mice was destroyed, the neurons were arranged disorderly, and the nuclei were pyknotic. Under transmission electron microscope, swollen and rounded mitochondria and mitochondrial structure wrapped by double membrane or multilayer membrane structure were observed. Compared with the CLP group, the levels of PINK1, Parkin, Beclin1 and LC3II/LC3 ratio in the p-PINK1+CLP group were significantly increased [PINK1 protein (PINK1/β-actin): 1.95±0.17 vs. 1.74±0.15, Parkin protein (Parkin/β-actin): 2.06±0.11 vs. 1.78±0.12, Beclin1 protein (Beclin1/β-actin): 2.11±0.12 vs. 1.67±0.10, LC3II/LC3I ratio: 3.63±0.12 vs. 2.27±0.10, all P < 0.05], while the levels of IL-6 and IL-1β were significantly decreased [IL-6 protein (IL-6/β-actin): 1.69±0.09 vs. 2.00±0.11, IL-1β protein (IL-1β/β-actin): 1.11±0.12 vs. 1.65±0.12, both P < 0.05], suggesting that overexpression of PINK1 protein could further activate mitophagy and reduce the inflammatory response caused by sepsis. There was no statistically significant difference in the above pathological changes and related indicators between Sham group and p-PINK1+Sham group, CLP group and p-vector+CLP group.@*CONCLUSIONS@#PINK1 overexpression can further activate CLP-induced mitophagy by upregulating Parkin, thereby inhibiting inflammation response and alleviate cognitive function impairment in SAE mice.


Subject(s)
Male , Animals , Mice , Mice, Inbred C57BL , Sepsis-Associated Encephalopathy , Phosphates , Actins , Beclin-1 , Interleukin-6 , Autophagy , Ubiquitin-Protein Ligases , Cognitive Dysfunction , Sepsis , Mitochondria , Protein Kinases
8.
Journal of Experimental Hematology ; (6): 746-752, 2023.
Article in Chinese | WPRIM | ID: wpr-982125

ABSTRACT

OBJECTIVE@#To explore the role of a new blood-based, multiomics and multidimensional method for evaluating the efficacy of patients with lymphoma.@*METHODS@#10 ml peripheral blood was extracted from each patient, and the genomic copy number aberrations (CNA) and fragment size (FS) were evaluated by low-depth whole genome sequencing of cfDNA, and the level of a group of plasma tumor marker (PTM) were detected at the same time. The cancer efficacy score (CES) was obtained by standardized transformation of the value of above three numerical indexes, and the changes of CES before and after treatment were compared to evaluate the patient's response to the treatment regimen.@*RESULTS@#A total of 35 patients' baseline data were collected, of which 23 cases (65.7%) had elevated CES values. 18 patients underwent the first time test. The results showed that the CES value of 9 patients with positive baseline CES decreased significantly at the first test, and the efficacy evaluation was PR, which was highly consistent with the imaging evaluation results of the same period. At the same time, the CNA variation spectrum of all patients were evaluated and it was found that 23 patients had partial amplification or deletion of chromosome fragments. The most common amplification site was 8q24.21, which contains important oncogenes such as MYC. The most common deletion sites were 1p36.32, 4q21.23, 6q21, 6q27, 14q32.33, and tumor suppressor-related genes such as PRDM1, ATG5, AIM1, FOXO3 and HACE1 were expressed in the above regions, so these deletions may be related to the occurrence and development of lymphoma.@*CONCLUSION@#With the advantages of more convenience, sensitivity and non-invasive, this multiomics and multidimensional efficacy detection method can evaluate the tumor load of patients with lymphoma at the molecular level, and make more accurate efficacy evaluation, which is expected to serve the clinic better.


Subject(s)
Humans , Multiomics , Lymphoma/genetics , Cell-Free Nucleic Acids , Genomics/methods , DNA Copy Number Variations , Ubiquitin-Protein Ligases
9.
Chinese Journal of Contemporary Pediatrics ; (12): 751-758, 2023.
Article in Chinese | WPRIM | ID: wpr-982023

ABSTRACT

OBJECTIVES@#To study the effect of ligustrazine injection on mitophagy in neonatal rats with hypoxic-ischemic encephalopathy (HIE) and its molecular mechanism.@*METHODS@#Neonatal Sprague-Dawley rats, aged 7 days, were randomly divided into a sham-operation group with 8 rats, a model group with 12 rats, and a ligustrazine group with 12 rats. The rats in the model group and the ligustrazine group were used to establish a neonatal rat model of HIE by ligation of the left common carotid artery followed by hypoxia treatment, and blood vessels were exposed without any other treatment for the rats in the sham-operation group. The rats in the ligustrazine group were intraperitoneally injected with ligustrazine (20 mg/kg) daily after hypoxia-ischemia, and those in the sham-operation group and the model group were intraperitoneally injected with an equal volume of normal saline daily. Samples were collected after 7 days of treatment. Hematoxylin and eosin staining and Nissl staining were used to observe the pathological changes of neurons in brain tissue; immunohistochemical staining was used to observe the positive expression of PINK1 and Parkin in the hippocampus and cortex; TUNEL staining was used to measure neuronal apoptosis; Western blotting was used to measure the expression levels of the mitophagy pathway proteins PINK1 and Parkin and the autophagy-related proteins Beclin-1, microtubule-associated protein 1 light chain 3 (LC3), and ubiquitin-binding protein (P62).@*RESULTS@#Compared with the sham-operation group, the model group had a significant reduction in the number of neurons, an increase in intercellular space, loose arrangement, lipid vacuolization, and a reduction in Nissl bodies. The increased positive expression of PINK1 and Parkin, apoptosis rate of neurons, and protein expression levels of PINK1, Parkin, Beclin1 and LC3 (P<0.05) and the decreased protein expression level of P62 in the hippocampus were also observed in the model group (P<0.05). Compared with the model group, the ligustrazine group had a significant increase in the number of neurons with ordered arrangement and an increase in Nissl bodies, significant reductions in the positive expression of PINK1 and Parkin, the apoptosis rate of neurons, and the protein expression levels of PINK1, Parkin, Beclin1, and LC3 (P<0.05), and a significant increase in the protein expression level of P62 (P<0.05).@*CONCLUSIONS@#Ligustrazine can alleviate hypoxic-ischemic brain damage and inhibit neuronal apoptosis in neonatal rats to a certain extent, possibly by inhibiting PINK1/Parkin-mediated autophagy.


Subject(s)
Rats , Animals , Hypoxia-Ischemia, Brain/metabolism , Animals, Newborn , Rats, Sprague-Dawley , Beclin-1 , Autophagy , Ubiquitin-Protein Ligases/metabolism , Protein Kinases/metabolism
10.
Journal of Experimental Hematology ; (6): 1-5, 2022.
Article in Chinese | WPRIM | ID: wpr-928661

ABSTRACT

OBJECTIVE@#To explore the effect and possible mechanism of dimethyl fumarate (DMF) on T-cell acute lymphoblastic leukemia (T-ALL), and provide experimental and theoretical basis for the clinical treatment of T-ALL.@*METHODS@#Jurkat cells were treated with different concentrations of DMF for 24 hours, and then the proportion and absolute count of Ki67-positive Jurkat cells were analyzed by flow cytometry. Meanwhile, the protein levels of nuclear factor-erythroid 2-related factor 2 (Nrf2) and E3 ubiquitin ligase HACE1 in Jurkat cells treated with DMF for 24 hours were evaluated by Western blot. Nrf2 proteins were co-immunoprecipitated in Jurkat cells, and then HACE1 protein was assessed by Western blot. Plasmids of Flag-Nrf2 and different gradients of Flag-HACE1 were transfected into HEK293T cells, and the levels of Flag-Nrf2 were detected by Western blot after 48 hours.@*RESULTS@#DMF could significantly inhibit the proportion and absolute count of Ki67-positive Jurkat cells, and DMF inhibited the proliferation of Jurkat cells in a dose-dependent manner (r=0.9595, r=0.9054). DMF could significantly up-regulate the protein levels of Nrf2 and E3 ubiquitin ligase HACE1 in Jurkat cells (P<0.01, P<0.01). HACE1 physically interacted with Nrf2 in Jurkat cells. Overexpression of Flag-HACE1 significantly increased the protein level of Flag-Nrf2 in a dose-dependent manner (r=0.9771).@*CONCLUSION@#DMF inhibits the proliferation of T-cell acute lymphoblastic leukemia cell. The mechanism may be that, DMF significantly up-regulates the protein levels of Nrf2 and E3 ubiquitin ligase HACE1, and HACE1 interacts with Nrf2 and positively regulates Nrf2 protein level.


Subject(s)
Humans , Dimethyl Fumarate/pharmacology , HEK293 Cells , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , T-Lymphocytes , Ubiquitin-Protein Ligases
11.
China Journal of Chinese Materia Medica ; (24): 484-491, 2022.
Article in Chinese | WPRIM | ID: wpr-927993

ABSTRACT

Amyloid β-protein(Aβ) deposition in the brain is directly responsible for neuronal mitochondrial damage of Alzheimer's disease(AD) patients. Mitophagy, which removes damaged mitochondria, is a vital mode of neuron protection. Ginsenoside Rg_1(Rg_1), with neuroprotective effect, has displayed promising potential for AD treatment. However, the mechanism underlying the neuroprotective effect of Rg_1 has not been fully elucidated. The present study investigated the effects of ginsenoside Rg_(1 )on the autophagy of PC12 cells injured by Aβ_(25-35) to gain insight into the neuroprotective mechanism of Rg_1. The autophagy inducer rapamycin and the autophagy inhi-bitor chloroquine were used to verify the correlation between the neuroprotective effect of Rg_1 and autophagy. The results showed that Rg_1 enhanced the viability and increased the mitochondrial membrane potential of Aβ-injured PC12 cells, while these changes were blocked by chloroquine. Furthermore, Rg_(1 )treatment increased the LC3Ⅱ/Ⅰ protein ratio, promoted the depletion of p62 protein, up-regulated the protein levels of PINK1 and parkin, and reduced the amount of autophagy adaptor OPTN, which indicated the enhancement of autophagy. After the silencing of PINK1, a key regulatory site of mitophagy, Rg_1 could not increase the expression of PINK1 and parkin or the amount of NDP52, whereas it can still increase the LC3Ⅱ/Ⅰ protein ratio and promote the depletion of OPTN protein which indicated the enhancement of autophagy. Collectively, the results of this study imply that Rg_1 can promote autophagy of PC12 cells injured by Aβ, and may reduce Aβ-induced mitochondrial damage by promoting PINK1-dependent mitophagy, which may be one of the key mechanisms of its neuroprotective effect.


Subject(s)
Animals , Humans , Rats , Amyloid beta-Peptides/toxicity , Ginsenosides/pharmacology , Mitophagy/physiology , PC12 Cells , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism
12.
Acta Academiae Medicinae Sinicae ; (6): 91-101, 2022.
Article in Chinese | WPRIM | ID: wpr-927851

ABSTRACT

Objective To explore the mechanism of puerarin inhibiting the proliferation,invasion,and migration of non-small cell lung cancer cells. Methods A549 cells were cultured and treated with different concentrations of puerarin.The inhibition rate (IR) on cell proliferation was detected by CCK-8,and qRT-PCR was performed to detect the mRNA levels of miR-490 and denticleless E3 ubiquitin protein ligase(DTL).Double luciferase reporter assay was employed to identify the targets of miR-490 and DTL based on the establishment of NC mimic group,miR-490 mimic group,NC inhibitor group,and miR-490 inhibitor group.The cells treated by 20 μmol/L puerarin were classified into six groups:DMSO,puerarin,puerarin+NC inhibitor,puerarin+miR-490 inhibitor,puerarin+miR-490 inhibitor+Si-NC,and puerarin+miR-490 inhibitor+Si-DTL.Transwell was used to detect cell migration and invasion.Western blotting was performed to detect the protein levels of epithelial-mesenchymal transition-related markers E-cadherin,N-cadherin,and Vimentin. Results With the increase in puerarin concentration,the IR gradually elevated (F=105.375,P<0.001),miR-490 expression gradually increased (F=32.919,P<0.001),and DTL expression gradually decreased (F=116.120,P<0.001).Compared with NC mimic group,miR-490 mimic group had decreased luciferase activity (t=7.762,P=0.016),raised miR-490 mRNA level (t=13.319,P<0.001),and declined DTL mRNA level (t=7.415,P=0.002).Compared with those in NC inhibitor group,miR-490 demonstrated decreased mRNA level (t=9.523,P=0.001) and DTL presented increased mRNA level (t=11.305,P<0.001) in miR-490 inhibitor group.Western blotting showed that the protein level of DTL was higher in NC mimic group (t=7.953,P=0.001) than in miR-490 mimic group and higher in miR-490 inhibitor group than in NC inhibitor group (t=10.552,P<0.001).Compared with DMSO group,puerarin group showed up-regulated mRNA level of miR-490 (t=10.255,P=0.001) while down-regulated mRNA level of DTL (t=6.682,P=0.003).Compared with those in puerarin+NC inhibitor group,the mRNA level of miR-490 declined (t=10.995,P<0.001) while that of DTL raised (t=12.478,P<0.001) in puerarin+miR-490 inhibitor group.The mRNA level of miR-490 had no significant difference between puerarin+miR-490 inhibitor+Si-NC group and puerarin+miR-490 inhibitor+Si-DTL group (t=1.081,P=0.341),and that of DTL was lower in the latter group (t=14.321,P<0.001).The protein level of DTL was higher in puerarin+miR-490 inhibitor group than in puerarin+NC inhibitor group (t=11.423,P<0.001),and lower in puerarin+miR-490 inhibitor+Si-DTL group than in puerarin+miR-490 inhibitor+Si-NC group (t=12.080,P<0.001).Compared with DMSO group,puerarin group showed inhibited cell proliferation (F=129.27,P<0.001).The activity of cell proliferation was higher in puerarin+miR-490 inhibitor group than in puerarin+NC inhibitor group (F=75.12,P<0.001),and higher in puerarin+miR-490 inhibitor+Si-NC group than in puerarin+miR-490 inhibitor+Si-DTL group (F=52.59,P<0.001).Compared with DMSO group,puerarin group had suppressed cell migration (t=8.963,P=0.001).The cell migration ability was higher in puerarin+miR-490 inhibitor group than in puerarin+NC inhibitor group (t=12.117,P<0.001) and higher in puerarin+miR-490 inhibitor+Si-NC group than in puerarin+miR-490 inhibitor+Si-DTL group (t=12.934,P<0.001).Puerarin group showed weakened cell invasion ability compared with DMSO group (t=4.710,P=0.009).The cell invasion ability was higher in puerarin+miR-490 inhibitor group than in puerarin+NC inhibitor group (t=13.264,P<0.001) and lower in puerarin+miR-490 inhibitor+Si-DTL group than in puerarin+miR-490 inhibitor+Si-NC group (t=13.476,P<0.001).Compared with DMSO group,puerarin group showed up-regulated protein level of E-cadherin (t=7.137,P=0.002) while down-regulated protein levels of N-cadherin (t=8.828,P=0.001) and vimentin (t=6.594,P=0.003).Compared with those in puerarin+NC inhibitor group,the protein level of E-cadherin (t=12.376,P<0.001) decreased while those of N-cadherin (t=13.436,P<0.001) and vimentin (t=11.467,P<0.001) increased in puerarin+miR-490 inhibitor group.Compared with puerarin+miR-490 inhibitor+Si-NC group,puerarin+miR-490 inhibitor+Si-DTL group up-regulated the protein level of E-cadherin (t=13.081,P<0.001) while down-regulated the protein levels of N-cadherin (t=10.835,P<0.001) and vimentin (t=11.862,P<0.001). Conclusion Puerarin could inhibit the proliferation,invasion,and migration of non-small cell lung cancer cells by up-regulating miR-490 and down-regulating DTL.


Subject(s)
Humans , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Isoflavones/pharmacology , Lung Neoplasms , MicroRNAs/metabolism , Ubiquitin-Protein Ligases/metabolism
13.
Acta Physiologica Sinica ; (6): 117-124, 2022.
Article in Chinese | WPRIM | ID: wpr-927587

ABSTRACT

The ubiquitin-proteasome system plays an important role in protein degradation. The process of ubiquitination requires ubiquitin activating enzyme E1, ubiquitin-conjugating enzyme E2, and ubiquitin ligase E3 to complete the coordination. Our previous studies have shown that HUWE1 (HECT, UBA and WWE domain containing 1), as an E3 ubiquitin ligase, can degrade epidermal growth factor receptor (EGFR) to inhibit renal tubulointerstitial fibrosis. However, E2 ubiquitin-conjugating enzymes binding to HUWE1 are still unclear. The aim of the present study was to identify E2 ubiquitin-conjugating enzymes of HUWE1. Real-time PCR was used to identify E2 ubiquitin-conjugating enzyme that may interact with HUWE1. The expression of E2 ubiquitin-conjugating enzyme was detected in kidney of unilateral ureteral obstruction (UUO) mice and HK-2 cells treated with transforming growth factor-β (TGF-β). The results showed that the expressions of E2 ubiquitin-conjugating enzyme UBE2Q2 were significantly down-regulated at both RNA and protein levels in UUO kidneys. The expression of UBE2Q2 was also down-regulated in HK-2 cells stimulated with TGF-β, which was consistent with the change in the expression of HUWE1. These findings indicated that UBE2Q2 expression was synergistic with HUWE1 in the injured kidney. Co-immunoprecipitation (Co-IP) experiments showed that HUWE1 interacted with UBE2Q2 in HK-2 cells. The co-localization of UBE2Q2 and HUWE1 was confirmed by cell immunofluorescence staining. After knocking down UBE2Q2 by siRNA, ubiquitin binding to HUWE1 and EGFR was decreased. In sum, our results demonstrated that UBE2Q2, ubiquitin-conjugating enzyme, works with HUWE1 to mediate ubiquitination and degradation of target protein in kidney.


Subject(s)
Animals , Humans , Mice , Cell Line , Fibrosis , Kidney Diseases , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
14.
Rev. colomb. cancerol ; 25(3): 125-139, jul.-set. 2021. tab, graf
Article in English | LILACS | ID: biblio-1376839

ABSTRACT

Abstract Proteasomal degradation is an essential regulatory mechanism for cellular homeostasis maintenance. The speckle-type POZ adaptor protein (SPOP) is part of the ubiquitin ligase E3 cullin-3 RING-box1 complex, responsible for the ubiquitination and proteasomal degradation of biomolecules involved in cell cycle control, proliferation, response to DNA damage, epigenetic control, and hormone signaling, among others. Changes in SPOP have been associated with the development of different types of cancer, since it can act as a tumor suppressor mainly in prostate, breast, colorectal, lung cancer and liver cancer, due to point mutations and/or reduced expression, or as an oncogene in kidney cancer by protein overexpression. In endometrial cancer it has a dual role, since it can act as a tumor suppressor or as an oncogene. SPOP is a potential prognostic biomarker and a promising therapeutic target.


Resumen La degradación proteosómica es un mecanismo de regulación esencial para el mantenimiento de la homeostasis celular. La proteína adaptadora Speckle-type POZ (SPOP) hace parte del complejo ubiquitin ligasa E3 cullin-3 RING-box1, encargado de la ubiquitinación y degradación proteosomal de biomoléculas involucradas en el control del ciclo celular, proliferación, respuesta al daño de ADN, control epigenético, señalización hormonal, entre otros. Las alteraciones en SPOP han sido asociadas al desarrollo de diferentes tipos de cáncer, ya que puede actuar como supresor tumoral principalmente en cáncer de próstata, mama, colorrectal y pulmón, debido a mutaciones puntuales y/o expresión reducida o como oncogén en cáncer riñón por sobreexpresión de la proteína. En cáncer endometrial tiene un rol dual, ya que puede actuar como supresor tumoral o como oncogén. SPOP es considerado como un potencial biomarcador pronóstico y un objetivo terapéutico prometedor.


Subject(s)
Humans , Oncogenes , Biomarkers , Ubiquitin-Protein Ligases , Epigenomics , Neoplasms , Prognosis , DNA Damage , Cell Cycle , Cullin Proteins , Cell Cycle Checkpoints , Ligases
15.
Journal of Experimental Hematology ; (6): 805-811, 2021.
Article in Chinese | WPRIM | ID: wpr-880151

ABSTRACT

OBJECTIVE@#To investigate the effect of the tripartite motif containing 31 (TRIM31) gene silencing on the proliferation and apoptosis of multiple myeloma cells and its possible mechanism.@*METHODS@#The normal bone marrow plasma cells (nPCs) were selected as control, and the mRNA and protein expression levels of TRIM31 in human multiple myeloma cell lines (U266, RPMI-8226, NCI-H929 and KMS-11) were detected by RT-qPCR and Western blot. Recombinant lentivirol vector containing shRNA-TRIM31 and its negative control were used to infect U266 cells respectively, and the mRNA expression level of TRIM31 in infected cells was detected by RT-qPCR. Then cell proliferation, colony forming and apoptosis were analyzed by CCK-8, soft agar assay, and flow cytometry, respectively. The protein expression levels of TRIM31, cleaved-caspase-3, BCL-2, Bax, p-Akt (Ser473), Akt and PI3K (p110α) were evaluated by Western blot. In addition, the PI3K/Akt signaling pathway-specific inhibitor LY294002 and TRIM31-shRNA lentivirus were used to interfere with U266 cells, and the cell proliferation, apoptosis, and protein expression of p-Akt (Ser473) and Akt were detected by CCK-8, flow cytometry and Western blot, respectively.@*RESULTS@#Compared with nPCs, the expression levels of TRIM31 mRNA and protein in U266, RPMI-8226, NCI-H929 and KMS-11 cells were significantly increased (P<0.001), especially in U266 cells. After lentivirus infection, the levels of TRIM31 mRNA and protein in U266 cells were significantly decreased (P<0.001). TRIM31 silencing significantly inhibited the proliferation of U266 cells (P<0.05), attenuated the ability of cell cloning, improved cell apoptosis, up-regulated the protein expressions of cleaved-caspase-3 and Bas as well as down-regulated expressions of BCL-2, p-Akt (Ser473) and PI3K (p110α). There was no significant effect on Akt protein. Intervention of LY294002 significantly enhanced the inhibition on cell proliferation and the promotion on apoptosis mediated by TRIM31 gene silencing in U266 cells.@*CONCLUSION@#TRIM31 gene silencing can inhibit U266 cell proliferation and promote its apoptosis, which may be closely related to inhibition of PI3K/Akt signaling pathway.


Subject(s)
Humans , Apoptosis , Cell Line, Tumor , Cell Proliferation , Gene Silencing , Multiple Myeloma , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics
16.
Chinese Journal of Medical Genetics ; (6): 131-133, 2021.
Article in Chinese | WPRIM | ID: wpr-879538

ABSTRACT

OBJECTIVE@#To explore the genetic basis for a patient with intellectual disability.@*METHODS@#Whole exome sequencing and Sanger sequencing were carried out for the patient. The result was verified in her family.@*RESULTS@#DNA sequencing revealed that the patient has carried a heterozygous nonsense c.40C>T (p.Arg14X) variant of the TRIP12 gene, which was de novo in origin. The variant was unrecorded in the Human Gene Mutation Database. Based on the American College of Medical Genetics and Genomics standards and guidelines, the variant was predicted to be pathogenic (PVS1+ PS2+ PP3).@*CONCLUSION@#The patient was diagnosed with autosomal dominant intellectual disability due to heterozygous c.40C>T variant of the TRIP12 gene.


Subject(s)
Female , Humans , Carrier Proteins/genetics , Codon, Nonsense , Heterozygote , Intellectual Disability/genetics , Ubiquitin-Protein Ligases/genetics , Exome Sequencing
17.
Frontiers of Medicine ; (4): 302-312, 2021.
Article in English | WPRIM | ID: wpr-880973

ABSTRACT

Cullin-RING E3 ubiquitin ligase (CRL)-4 is a member of the large CRL family in eukaryotes. It plays important roles in a wide range of cellular processes, organismal development, and physiological and pathological conditions. DDB1- and CUL4-associated factor 8 (DCAF8) is a WD40 repeat-containing protein, which serves as a substrate receptor for CRL4. The physiological role of DCAF8 is unknown. In this study, we constructed Dcaf8 knockout mice. Homozygous mice were viable with no noticeable abnormalities. However, the fertility of Dcaf8-deficient male mice was markedly impaired, consistent with the high expression of DCAF8 in adult mouse testis. Sperm movement characteristics, including progressive motility, path velocity, progressive velocity, and track speed, were significantly lower in Dcaf8 knockout mice than in wild-type (WT) mice. However, the total motility was similar between WT and Dcaf8 knockout sperm. More than 40% of spermatids in Dcaf8 knockout mice showed pronounced morphological abnormalities with typical bent head malformation. The acrosome and nucleus of Dcaf8 knockout sperm looked similar to those of WT sperm. In vitro tests showed that the fertilization rate of Dcaf8 knockout mice was significantly reduced. The results demonstrated that DCAF8 plays a critical role in spermatogenesis, and DCAF8 is a key component of CRL4 function in the reproductive system.


Subject(s)
Animals , Male , Mice , Cullin Proteins/genetics , DNA-Binding Proteins/genetics , Factor VIII , Mice, Knockout , Spermatogenesis/genetics , Ubiquitin-Protein Ligases
18.
Frontiers of Medicine ; (4): 252-263, 2021.
Article in English | WPRIM | ID: wpr-880970

ABSTRACT

An unexpected observation among the COVID-19 pandemic is that smokers constituted only 1.4%-18.5% of hospitalized adults, calling for an urgent investigation to determine the role of smoking in SARS-CoV-2 infection. Here, we show that cigarette smoke extract (CSE) and carcinogen benzo(a)pyrene (BaP) increase ACE2 mRNA but trigger ACE2 protein catabolism. BaP induces an aryl hydrocarbon receptor (AhR)-dependent upregulation of the ubiquitin E3 ligase Skp2 for ACE2 ubiquitination. ACE2 in lung tissues of non-smokers is higher than in smokers, consistent with the findings that tobacco carcinogens downregulate ACE2 in mice. Tobacco carcinogens inhibit SARS-CoV-2 spike protein pseudovirions infection of the cells. Given that tobacco smoke accounts for 8 million deaths including 2.1 million cancer deaths annually and Skp2 is an oncoprotein, tobacco use should not be recommended and cessation plan should be prepared for smokers in COVID-19 pandemic.


Subject(s)
Adult , Animals , Humans , Mice , COVID-19 , Epithelial Cells , Lung , Pandemics , Peptidyl-Dipeptidase A , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Ubiquitin-Protein Ligases/genetics
19.
Chinese Journal of Medical Genetics ; (6): 631-634, 2021.
Article in Chinese | WPRIM | ID: wpr-888362

ABSTRACT

OBJECTIVE@#To screen proteins interacting with ring finger protein 216(RNF216) through yeast two hybrid experiment, and further clarify the role of RNF216 in the pathogenesis of gonadotropin-releasing hormone deficiency.@*METHODS@#A recombinant expression vector pGBKT7-RNF216 was constructed and transformed into yeast Y2HGold, which was hybridized with a human cDNA library in order to screen proteins interacting with RNF216. The interaction was verified in yeast Y2HGold.@*RESULTS@#A recombinant expression vector pGBKT7-RNF216 was successfully constructed and expressed in yeast Y2HGold. Filamin B (FLNB) was identified by yeast two hybrid experiment, and their interaction was verified in yeast Y2HGold.@*CONCLUSION@#An interaction between FLNB and RNF216 was identified through yeast two hybrid experiment. RNF216 may affect the proliferation and migration of GnRH neurons by regulating FLNB or FLNB/FLNA heterodimers.


Subject(s)
Humans , Gene Library , Gonadotropin-Releasing Hormone/genetics , Proteins , Two-Hybrid System Techniques , Ubiquitin-Protein Ligases/genetics
20.
Braz. j. med. biol. res ; 54(11): e11592, 2021. tab, graf
Article in English | LILACS | ID: biblio-1339449

ABSTRACT

Cervical cancer (CC) patients have a poor prognosis due to the high recurrence rate. However, there are still no effective molecular signatures to predict the recurrence and survival rates for CC patients. Here, we aimed to identify a novel signature based on three types of RNAs [messenger RNA (mRNAs), microRNA (miRNAs), and long non-coding RNAs (lncRNAs)]. A total of 763 differentially expressed mRNAs (DEMs), 46 lncRNAs (DELs), and 22 miRNAs (DEMis) were identified between recurrent and non-recurrent CC patients using the datasets collected from the Gene Expression Omnibus (GSE44001; training) and The Cancer Genome Atlas (RNA- and miRNA-sequencing; testing) databases. A competing endogenous RNA network was constructed based on 23 DELs, 15 DEMis, and 426 DEMs, in which 15 DELs, 13 DEMis, and 390 DEMs were significantly associated with disease-free survival (DFS). A prognostic signature, containing two DELs (CD27-AS1, LINC00683), three DEMis (hsa-miR-146b, hsa-miR-1238, hsa-miR-4648), and seven DEMs (ARMC7, ATRX, FBLN5, GHR, MYLIP, OXCT1, RAB39A), was developed after LASSO analysis. The built risk score could effectively separate the recurrence rate and DFS of patients in the high- and low-risk groups. The accuracy of this risk score model for DFS prediction was better than that of the FIGO (International Federation of Gynecology and Obstetrics) staging (the area under receiver operating characteristic curve: training, 0.954 vs 0.501; testing, 0.882 vs 0.656; and C-index: training, 0.855 vs 0.539; testing, 0.711 vs 0.508). In conclusion, the high predictive accuracy of our signature for DFS indicated its potential clinical application value for CC patients.


Subject(s)
Humans , Female , Uterine Cervical Neoplasms/genetics , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Messenger , Gene Expression Regulation, Neoplastic , Disease-Free Survival , rab GTP-Binding Proteins , Ubiquitin-Protein Ligases , Neoplasm Recurrence, Local/genetics
SELECTION OF CITATIONS
SEARCH DETAIL